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Abstract 

We discuss various aspects of self-energy corrections to the fermion propa- 

gator at finite temperature. Several calculational methods not relying on the 

renormalization of the mass or of the wave function are discussed. General ex- 

pressions are given. It is shown that, when calculating a physical process, the 

thermal mass enters essentially the phase space factor and not the dynamical 

part of the process, at least in some limiting cases. Comparison with the renor- 

malization approach is discussed and it appears that there are no ambiguities 

in the calculation of the self-energy corrections at fmite temperature. 
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I. Introduction 

Over the last few years there has been an increasing interest in applying Per- 

turbation Theory at finite temperature [l-3]. A point of particular importance is 

the contribution of the self-energy corrections [4,5] and the question of fermion mass 

renormalization at finite temperature [6]. A method was proposed some time ago 

which dealt with this problem in a way very similar to the 2’ = 0 case: it involved 

the introduction of a non scalar mass counter-term in the Lagrangian as well a wave 

function (22) renormalization. Special care had to be taken because of the non co- 

variance of the expressions at finite temperature (the calculations are usually done in 

the plasma rest-frame). This method is rather cumbersome and it was suggested re- 

cently that it did not lead to the correct results [7]. S’ mce the temperature dependent 

terms are ultra-violet finite it is not necessary to introduce an explicit renormalization 

procedure and the self-energy corrections can be evaluated directly. We present here 

two ways to calculate these contributions which lead to identical results. In sec.2 

we state the problem and present our results: they are quite simple in the case of 

vanishing fermion masses or when T < mfcrm;,,,,. In sec.3 we present a method of 

calculating the self-energy contribution based on the resummation of the diagrams: 

this will help in interpreting the results. In sec.4 we generalize the method of [7] 

based on an explicit evaluation of derivatives of b functions. Sec.4 is devoted to a 

discussion of the results as well as various subtleties related to the expansion of the 

self-energy contribution around the mass-shell condition. 
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II. The Results 

At T = 0 the self-energy diagrams are ultra-violet divergent. The renormalization 

procedure consists in absorbing the divergences in a redefinition of the physical quan- 

tities. We assume here that the standard renormalization procedure has been carried 

out and we define m as the renormalized fermion mass at zero temperature. In an 

adequately defined scheme it is then enough to calculate the lowest order diagrams 

with the renormalized mass and ignore the self energy corrections on the external 

particles. The renormalized mass appears both in the phase space factor (the exter- 

nal momenta satisfy pz = m*), and in the matrix element squared (the virtual lines 

will involve the spin projection operator ($ + m)). 

At 2’ # 0 the situation is different. It is particularly simple if one starts with 

a massless quark or if one can neglect the temperature dependence on the internal 

fermion line (T < m). In both cases the result is that the pole in the fermion 

propagator is shifted to rn+ = m2 + cg2T2, a well known result. This thermal mass 

will appear when taking discontinuities (the propagator pole is then replaced by 

S(p’ - mg)) and therefore will be relevant for the external mass: it consequently 

enters the phase space factor. On the other hand, when evaluating the self energy 

diagram contribution to a particular process, it turns out that the matrix element 

squared is calculated essentially with the T = 0 mass: the temperature dependent 

term disappears when doing the relevant traces. This arises because of the peculiar 

form of the self energy correction at finite temperature which is of the form [4,5] 

%)I mn~,-.hell = -Y&l I’ (2.1) 
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that is C is not a scalar but a matrix such that 

sm; = 2 p.I 

= c g’T” 
(2.2) 

The fact that Cm,,,,-.,,e,i transforms as j means that the mass shift due to J does 

not break chiral invariance. To put it differently, one could introduce by analogy 

with the T = 0 renormalization procedure, a term ~JCJ in the Lagrangian and this 

counter-term would not change the chiral properties of the original Lagrangian. The 

self energy diagrams contribute other terms which are infra-red or mass singular but 

it has been shown that they cancel when a physical quantity is considered [E-12]. 

In the caSe when the fermion mass cannot be neglected and when the condition 

T < m is not satisfied the situation is more complicated and will be described below. 

III. The Summation Method 

For definiteness we consider the case of a Higgs particle in an QED plasma. The 

application of the cutting rules at finite temperature [13] allows one to calculate the 

quantity r = rd - I’;, namely the difference between the rate of decay (H -+ e+e-) 

and the rate of formation (e+e- -+ H) of the Higgs particle. At lowest order, it is in 

n dimensions 

r” = -f(g/f)2(eQ’T - 1) / 2% (8(-p:) - w--(El)) @‘(pi) -v(G)) 

x Zrb(p: - mz)27r6(p~ - m’)Tr [(PI f mu2 + m)l(2x)“6(p1 - pa - n) 

(3.1) 
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where Q is the Higgs mass and & = 1~71. Aft er evaluation of the phase space integrals 

it comes out 

r" = ($/*-1)~$(*/2)$ Q'(1-~)3'z(Q~~~m~)'rr::_z:)) 

(3.2) 

= tanh(Qj4T)gQ’ 

where in the last line we have set c = 0. Note that the phase space factor contributes 

V=&ZZ/@ while the trace factor gives Qzv*. Consider now the self energy 

corrections to quark line pl After cancellation of ill-defined terms, by adding the 

contributions of all ‘cut diagrams’ as required by T # 0 field theory one finds [9,10,13] 

P = -(gp~)yeQ/T- 1) 
I 

X L(P~ - m’)Re(Tr [(I& + m)&(-iReX(p~))(pl + m)a,(j, + VZ)]) 

with 

x (‘JR)“6L(P1 - pz - n) 

(3.3) 

(3.4) 

The expression for ReC(pl), the temperature dependent part of the self energy loop 

will be given later. Turning back to eq.(3.1) , we can use the relation 

d(p: - d) = Rehl, 

SO that when considering the expression r” + r SE, there appears the following com- 
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bination 

@I + ~)AI + ($I + m)&( -iReC(pl))(& + m)A1. 

To order 2 (ReC(pl) is proportional to 2) this can be written as 

(3.5) 

S(')(p,) = 
$1 - m - ieC(pl) + iT 

(3.6) 

Such a result would also have been obtained had we summed the self energy loop to 

all orders on the fermion p, propagator. We turn now to the evaluation of eq.(3.6) 

for later use in eq.(3.3) . One finds, in the Feynman gauge, 

%3(lc)6(kZ) 

Re%) = 2(ed2 / (2;“, [(p + k)S _ m2 + iv ((1 - c)@ + F) - (2 - e)m) 

(3.7) 
_ nF(k)s(k* -my 

(p - k)2 + iv 
((I- e)P - (2 - w] 

Introducing the notation 

R=%) = A(P)$ - ~B(P) + F(P) 

we have 

A(P) = Cl- EVE(P) 

with 

%) = (2 - e) (c,(P) - cFb)) 

m(k)J(k’) 
‘B(P) = 2(e”)2 J (2:kI (p + k)? _ ,Z + ill 

and 

d”k nF(k)6(k2 -ml) 
CF(P) = 2(=0 / (2x)n-1 (p - k)l + iq 

(3.8) 

(3.9) 

(3.10) 

K(P) = 20 - ~)(4)’ / @:‘,“, P ((p +n;;2k!y+ in - “;b”l”i;“;: 5 ;‘)) (3.11) 
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The above integrals are for an off mass-shell fermion. Unlike what is done at zero 

temperature, we defer to a later stage the expansion of these expressions around the 

mass-shell condition #I = m. Introducing now the notation of eq.(3.8) the fermion 

propaga%or at C(2) can be written 

-i.+)(p) = #Cl - A(P)) - P(P) + 41 - B(P)) 
p’( 1 - 2A(p)) - 2p.K(p) - mZ( 1 - 2B(p)) + iq 

(3.12) 

Considering now the denominator of the above equation and using the definitions 

eqs.(3.8-3.11), it can be recast in the form 

p - (1 - e)(C,(p) - CF(I)))I [p’ - sm$ - 772 (1 - 2(CB(P) - G(P)))] 

Here we have introduced the notation 

sm: = 2.9 
I 

(2;f-l (ns(k)W) + +(k)J(ka - m2)) (3.13) 

We now expand the integrals C,(p) and CF(P) for small pz - m2 using the relations 

a(W S(k’) 
(~+k)~-m’+iq = (P^+k)z-ml 

- (p’ - m2) 6(‘4 
((p^+ k)a - mz)* 

6(kZ - d) 

(p - k)* + iv 

where the vector p^ = (E,,p’), with Ep = Jm. The above equations are not 

completely defined as we have not specified yet how p” and p’ depend on pz and 

there&me d(k.p)/dp2 does not have a precise meaning. The four-vector p is in fact 

fully determined by the kinematical constraints of the process under study. In our 

case, ‘t!my are given by the &functions in eq.(3.1) w h ere the quark line , with the self- 

energy insertion, is taken off-shell ( m2 replaced by pz in the corresponding 6-function). 
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The 4-vector components are then found to be 

so that 

pO+Y-ma 
2Q 

lp12 = PO2 - pz 

Go 1 

iip &Jzrn’ = 2Q 

(3.15) 

dip? =l -- 
dp= p’=mx 4127 

which all what is needed to specify the equations above. We dwell in some detail on 

this problem because it has sometimes been assumed that lfl could be kept fixed with 

the whole off-shellness dependence put into p ‘. This hypothesis is inconsistent with 

the kinematical constraints of the considered process and would lead to the wrong 

results as far as finite correction terms are concerned. 

Defining in an obvious way 

C(p) = c t (p’ - m*)e’ 

one finds 

6.B = 0 

d”k nF(k)b(k’ -ml) 
EF = 2(ePe)2 / (2r),,-1 

(F - k)’ 

d”k 

(27r)“--’ 
v(kMk’) 

‘((p^+ k)l -mz)l 

(3.17) 

d”k 
‘; = -z(epc)2 / (2r)“-1 

-(k)6(kz - m2) ( 1 _ dP;d lgzml) 
((jj- k)2)1 

Note that the derivative term does not contribute in c?L because of the antisymmetry 
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property of the integrand under the change k + -k. The previous results can then 

be used to express the fermion propagator at O(G) in the following form 

-is(‘)(p) = (1 - eF - 2m*((5; - 6;)) 
p’ - 6m$ - m*(l + 2cF) + iv 

(3.18) 

The pole in the propagator is at 

p2 = m$ 
(3.19) 

= 6m$ + mZ( 1 + 26~). 

In the numerator of eq.(3.18) ‘t 1 1s enough to evaluate the integrals at p^ = p since 

terms of O(e’(p’ - m’)) are in fact of O(e*) and can therefore safely be neglected. 

We are now in a position to evaluate the contribution of the self energy diagrams 

to the Higgs process. It is a relatively trivial task now. Comparing the form of the 

O(G) propagator, eq.(3.18) , with that of the lowest order propagator it is enough to 

substitute in the lowest order rate, eq.(3.1) , the expression 

(1 - 8~ - 2m”(eb - 6’;)) [j - F(p) + m( 1 + 2eF)] 6(p2 - m$) 

to the usual factor 

(16 + m)6(pz - m’). 

The net result can then be expressed as 

I”’ + rSE = ro !!? 
2) 

1 _ 2+K(@-1;; fC%) 
‘v - 2m2(G(F11) + G(iG) - G.(jG) - G;(jL)) 

(3.20) 

The factor 

VT=Jv (3.21) 
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is the threshold factor appropriate for the O(e*) al 1 t c cu a ion. Its origin is clear: it 

comes from the kinematics of two external particles of mass mT. The dynamical part, 

related to the trace evaluation, is contained in the expression in square brackets in 

eq.(3.20) . One may remark that the mass shift 6m$ does not appear in this factor 

since it cancels in terms such as p* - 2p.K(p) leaving in the final result only pieces 

like rn*eF. At zero temperature the term 2pX(p) f o course does not exist leaving in 

the trace factor the full mass shift contribution. Further discussion of this result will 

be given in Sec.5. 

IV. The Direct Calculation 

We now turn back to eq.(3.3) and carry out the integration directly. The basic 

step is to recognize that 1141 

Re(-iA:) = c$$(P: - m*) 

Since after performing the pz integration there still remains in the integrand of eq.(3.3) 

another 6 function, whose argument also depends on m*, the usual method of inte- 

gration by part is not very useful. We use here the trick of ref.(7] who define in 

general 

I GL~F(P,~)&~(P’ - ml) = -J& /flpF(p,m)b(p’ - Giii2$-.m (4.2) 

Upon using this relation and carrying out the phase space integration on p1 in eq.(3.3) 

we arrive at the relatively simple formula 

rSE = cd)’ 
l?(l- e) g2 a 

-- (l~~I’~zL~~(l~~l~~~(/Q -PYI)G(PI,~))~~=,, (4.3) r(2 - 2c) 8rQ L%i? 
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The function G(p,, i;;) contains all the dynamical part of the process and it is defined 

as 

G(PI,%) = 2’WM + m)Re%)(#1 + m)($* + m)) (4.4) 

It explicitly depends on 6i because of the relations 

py=;t 
=* - m* 

2Q 
(4.5) 

~p;l’ = py* - 5;i* 

This set of equations is identical to the set eq.(3.15) . The derivation on the statistical 

factors do not give any contribution so that the final result is simply expressed as 

rSE - - L 
4QW 

(1 - Zc)G(p,,m) - Q*v*&G(p (4.6) 

where the first term on the right hand side arises from the derivation of the phase 

space factor. The tedious part is now the evaluation of the eq.(4.4) We shall not 

give here the full off-shell expression but only the relevant on-shell results. We find 

G(p~,iii)l~=, = -4Q*v*(6mg + 2m*i?F) 

(4.7) 

&G(p~,iii)(;=,,, = 4(2q.K(&) + 2m*Q*v*(6$ - &) + (Q” $ 4m*)eF) 

where the various functions are defined in eq.(3.17) Combining all these results and 

similar ones for the fermion p* we obtain again eq.(3.20) where the phase space factor 

zr~ has now been expanded to O(e*). 

As mentioned before, we did not expand the self-energy contribution until late in 

the calculation when we had to deal with scalar expressions. This was done in order 

to avoid expanding matrix expressions which are more complicated to deal with than 

scalar ones. Had we followed the usual approach and expanded C we would have, 
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of course, gotten the same result both in the summation method and in the direct 

calculation. In order to make the connection with the usual renormalization more 

obvious we will come back to this point later. 

V. Discussion of the Results 

To ease the comparison with previous works we rewrite eq.(3.20) so as to separate 

off the explicit dependence on the quark mass m and we obtain 

r0 + pSE = r0 2 
2) [ 

1 _ 2~.K(Sl);229.KG) _ 2cF 

- 2m*(G(Fl) + G&G) - G&%1) - Q&)) (5.1) 

We turn now to special cases. The simplest one is the case of a massless fermion 

at T = 0. As is obvious from the above equation, many terms drop out and the 

evaluation of the remaining integrals is very simple. In that limit we find 

Zq.K(p^) = --F(E) ~sign(p’)~Q* /,- zl-*‘(n~($Qz) + n~( ~Qz)) dz (5.2) 

where we have defined 

Introducing a notation reminiscent of the wave function renormalization approach we 

write 

Zq.K@) = Q*(Z;’ - 1) (5.4) 
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with this definition of Za identical to that of ref.191 (see eq.(3.24) in that paper) where 

the color factor has been ignored here since we work in QED. We also note that the 

function 6F vanishes in the massless fermion limit so that the self-energy correction 

takes the very simple form [15] 

r” + rSE = I%( 1 - 2( 2;’ - 1)) 

= timh(q,4T)$@ 
112 

(1 - 2(ZC’ - 1)) 

(5.5) 

The factor v is equal to I in the limit we consider. The divergent factor Z;’ - 1 

compensates with the contribution coming from the emission of a gluon [S-12]. The 

behavior in m$ of eq.(5.5) is to be contrasted with the behavior in m2 of eq. (3.2): 

the dynamically generated mass appears only in the phase space factor. 

The next simplest example is with m # 0 but assuming 2’ < m : all thermal 

factors on the internal fermion legs can then be neglected because they are of O(C”‘~) 

and therefore the integrals e.n and c?; drop out. We also set E = 0 so that the results 

can be compared with those of refs.[7] and [lo]. Following the notation and the 

normalization conventions of ref.[lO] we find in that limit 

2q.K@) = sign(p’)f i In (2) J wn~(W) dw 

= sign(#) :QZe 
(5.6) 

and 

(5.7) 

We can now define the wave function renormalization factor from the first line of 
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eq.(S.l) 

(54 

in agreement with ref.[lO]. The constant terms cannot be compared since they were 

not calculated in the previous work. Needless to say that our result is also in complete 

agreement with ref.[7] for Zz as well as for the constant terms. 

It is interesting to remark that agreement with ref.[lO] is obtained even though 

it is chosen there, by convention, to expand around the mass shell condition keeping 

ipl fixed, a choice which, we believe, is not appropriate in the case we consider. A 

difference would appear, however, in the general case (not restricting T < m ) when 

the thermal factor on the fermion propagator also contributes. It is localized in the 

term ma 8’; in eq.(3.20) , since & depends explicitly , ‘unlike all the other terms, 

on the explicit expression of d(k.p)/d#. 

In the methods for calculating the contribution of the self-energy presented in 

Sec.3 and Sec.4 the separation between Zz and the rest of the terms appears rather 

artificial. We discuss here how to make the connection between the various approaches 

clearer and show that all methods give, indeed, the same results. This relies on the 

expansion of E(p) around the mass shell condition. For simplicity we again neglect 

the terms proportional to no. Following [6] we decompose Rex(p) as 

Re%) = ~(ZA(P - m) + ? + (P’ - m’)C) 

where the various pieces are defined by 

;z* = 2m2 2(4’J lPk 
w(k)S(k*) 

(2x)“-’ ((5 + k)? - ~3)~ 

(5.9) 

(5.10) 
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(5.11) 

The last expression is a new integral not introduced in the previous sections. The 

propagator at O(e’) 

‘(‘)(‘) = j - m - i&(p) + iv 

= i (1+ SZI, 
#-5?tm 

pa - 32p.Z - s(p’ - m2)2p.L - mz 

The integral ,l depends on the on-shell vector p^ and one can expand 

dp.I 
2p.I = 2fT.Z + (p’ - ma)- 

dpz ti=,,,l 

(5.13) 

(5.14) 

The first term is related to the mass shift sm$ while the second one compensates 

the term in 2p.L in eq.(5.13) We then find 

S(‘)(p) = i (1 t ;1A)ppI:2J-+S;$ 

which is identical to eq.(3.18) up to terms in eF and & which are neglected here. It 

also allows, following [6], to calculate Za which is defined in coordinate space as 

sR(z - y) = Z;’ S(‘)(+ - Y) (5.16) 

and with the procedure of ref.[6] eq.(5.8) is immediately recovered. 

Instead of using eq.(5.15) directly in the calculation, Donoghue et al. perform a 

finite mass renormalization and introduce a thermal wave function which satisfies 

(d-sJ-m)llrT=O (5.17) 
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and a counter-term 5-I in the Lagrangian. The propagator to O(2) in the renor- 

malized theory is then 

j-mi-~/ + d-mi-~J(-i~Re~(P))p_m-~~ (518) 
+ j - ,‘- &a$ - ;- 3-I 

The first term is the renormalized lowest order contribution while the last two pieces 

are the O(2) correction and the counter-term respectively. Expanding the lowest 

order propagator in terms of z-c/($ - m) one immediately cancels, to O(e’), the 

counter-term. The higher order correction can be evaluated as before and we recover 

eq.(5.15) It has been said that the renormalization approach with a non scalar 

counter-term gave the wrong results. The reason for this claim was that the lowest 

order contribution was then incorrectly assumed to be i/(j - m - 6mT) with 6mT = 

2$p.Z/2m and the non scalar nature of the thermal contribution to the mass was 

consequently not properly taken into account. 

On the other hand, following ref.[7], we can adopt 6mT as defined above as a 

counter-term and (# -m - s.J)& = 0 as the Dirac equation at finite temperature. 

Then the perturbative series takes the form 

p _ ,’ trnT f j _ ,’ 6,$-i; ReC(q$ - ,’ srnr 
(5.19) 

+ p - ,’ 6mT(i6mT)p - ,” hT 

It is easy to see, expanding the first term in 6mT/(j - m), that the counter-term is 

exactly cancelled leaving us once again with the the result eq.(5.15) Unlike what 

is said in ref.[7] we therefore do not see any ambiguity related to the choice of the 

counter-term. 
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It is clear, in view of the above discussion, that, for practical calculations the 

renormalization approach, besides being unnecessary, is not particularly elegant since 

the counter-terms do not have the usual simplicity of the T = 0 calculation. In the 

first case it amounts to introduce a chirality preserving but momentum dependent 

piece in the Lagrangian. In the second approach, the counter-term breaks chiral 

symmetry which is against standard knowledge concerning the high temperature cor- 

rections. Futhermore, in the general case when the fermion thermal contribution is 

not neglected, it would be SmT = 2$p.Z/2m + me’,/2 which is again momentum 

dependent as can be seen from eq.(3.17) . 

VI. Conclusions 

We have presented several ways to calculate the contribution of the self-energy 

diagram to a physical process such as Higgs production in a plasma in equilibrium. 

The importance of correctly defining the off-shell behavior of the self-energy correction 

was discussed. We have shown that all methods agree and that no ambiguity remains 

in the evaluation of this diagram. The dynamically generated fermion mass at finite 

temperature cannot be treated simply as a scalar mass term. This has consequences 

on the structure of the finite correction terms. 
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